Exercise 44

Find the critical numbers of the function.

$$
f(x)=x^{-2} \ln x
$$

Solution

A critical number is a value of x for which the derivative is zero or nonexistent. Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{-2} \ln x\right) \\
& =\left[\frac{d}{d x}\left(x^{-2}\right)\right] \ln x+x^{-2}\left[\frac{d}{d x}(\ln x)\right] \\
& =\left(-2 x^{-3}\right) \ln x+x^{-2}\left(\frac{1}{x}\right) \\
& =-\frac{2 \ln x}{x^{3}}+\frac{1}{x^{3}} \\
& =\frac{-2 \ln x+1}{x^{3}}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve both equations for x.

$$
\begin{array}{rr}
-2 \ln x+1=0 & x^{3}=0 \\
\ln x=\frac{1}{2} & x=0 \\
x=e^{1 / 2} & x=0
\end{array}
$$

